The Tripartite Type III Secreton of Shigella flexneri Inserts Ipab and Ipac into Host Membranes

نویسندگان

  • Ariel Blocker
  • Pierre Gounon
  • Eric Larquet
  • Kirsten Niebuhr
  • Véronique Cabiaux
  • Claude Parsot
  • Philippe Sansonetti
چکیده

Bacterial type III secretion systems serve to translocate proteins into eukaryotic cells, requiring a secreton and a translocator for proteins to pass the bacterial and host membranes. We used the contact hemolytic activity of Shigella flexneri to investigate its putative translocator. Hemolysis was caused by formation of a 25-A pore within the red blood cell (RBC) membrane. Of the five proteins secreted by Shigella upon activation of its type III secretion system, only the hydrophobic IpaB and IpaC were tightly associated with RBC membranes isolated after hemolysis. Ipa protein secretion and hemolysis were kinetically coupled processes. However, Ipa protein secretion in the immediate vicinity of RBCs was not sufficient to cause hemolysis in the absence of centrifugation. Centrifugation reduced the distance between bacterial and RBC membranes beyond a critical threshold. Electron microscopy analysis indicated that secretons were constitutively assembled at 37 degrees C before any host contact. They were composed of three parts: (a) an external needle, (b) a neck domain, and (c) a large proximal bulb. Secreton morphology did not change upon activation of secretion. In mutants of some genes encoding the secretion machinery the organelle was absent, whereas ipaB and ipaC mutants displayed normal secretons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes.

Shigella flexneri causes human dysentery after invading the cells of the colonic epithelium. The best-studied effectors of Shigella entry into colonocytes are the invasion plasmid antigens IpaC and IpaB. These proteins are exported via a type III secretion system (TTSS) to form a pore in the host membrane that may allow the translocation of other effectors into the host cytoplasm. TTSS-mediated...

متن کامل

Liposomes recruit IpaC to the Shigella flexneri type III secretion apparatus needle as a final step in secretion induction.

Shigella flexneri contact with enterocytes induces a burst of protein secretion via its type III secretion apparatus (TTSA) as an initial step in cellular invasion. We have previously reported that IpaD is positioned at the TTSA needle tip (M. Espina et al., Infect. Immuno. 74:4391-4400, 2006). From this position, IpaD senses small molecules in the environment to control the presentation of Ipa...

متن کامل

Interaction of Shigella flexneri IpaC with model membranes correlates with effects on cultured cells.

Invasion of enterocytes by Shigella flexneri requires the properly timed release of IpaB and IpaC at the host-pathogen interface; however, only IpaC has been found to possess quantifiable activities in vitro. We demonstrate here that when added to cultured cells, purified IpaC elicits cytoskeletal changes similar to those that occur during Shigella invasion. This IpaC effect may correlate with ...

متن کامل

IpaD localizes to the tip of the type III secretion system needle of Shigella flexneri.

Shigella flexneri, the causative agent of shigellosis, is a gram-negative bacterial pathogen that initiates infection by invading cells within the colonic epithelium. Contact with host cell surfaces induces a rapid burst of protein secretion via the Shigella type III secretion system (TTSS). The first proteins secreted are IpaD, IpaB, and IpaC, with IpaB and IpaC being inserted into the host ce...

متن کامل

Structural characterization of the N terminus of IpaC from Shigella flexneri.

The primary effector for Shigella invasion of epithelial cells is IpaC, which is secreted via a type III secretion system. We recently reported that the IpaC N terminus is required for type III secretion and possibly other functions. In this study, mutagenesis was used to identify an N-terminal secretion signal and to determine the functional importance of the rest of the IpaC N terminus. The 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 147  شماره 

صفحات  -

تاریخ انتشار 1999